- 已编辑
手写数字的MNIST数据集
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)
百度镜像:
- https://dataset.bj.bcebos.com/mnist/train-images-idx3-ubyte.gz
- https://dataset.bj.bcebos.com/mnist/train-labels-idx1-ubyte.gz
- https://dataset.bj.bcebos.com/mnist/t10k-images-idx3-ubyte.gz
- https://dataset.bj.bcebos.com/mnist/t10k-labels-idx1-ubyte.gz
# 使用 python paddle 下载 import paddle from paddle.vision.transforms import Compose, Normalize transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='CHW')]) # 使用transform对数据集做归一化 print('download training data and load training data') train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) print('load finished')